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Differential geometry provides a useful mathematical framework for describing

the fundamental concepts in crystallography. The notions of point and

associated vector spaces correspond to those of manifold and tangent space at

a given point. A space-group operation is a one-to-one map acting on the

manifold, whereas a point-group operation is a linear map acting between two

tangent spaces of the manifold. Manifold theory proves particularly powerful as

a unified formalism describing symmetry operations of conventional as well as

modulated crystals without requiring a higher-dimensional space. We show, in

particular, that a modulated structure recovers a three-dimensional periodicity

in any tangent space and that its point group consists of linear applications.

1. Introduction

The common mathematical tool for the geometrical descrip-

tion of crystals is that of vector spaces. Our three-dimensional

space (in which crystals do exist) is called point space E and its

properties are mainly dictated by those of the so-called asso-

ciated vector space V. This is achieved by associating a vector

PQ ��= r of V with any two points P and Q of E. The scalar

product of the pre-Hilbert space V then provides lengths

between points and angles between lines in V.

Excellent textbooks such as those written by W.

Opęchowski (1986), H. Burzlaff & H. Zimmermann (1977), H.

Wondratschek (2002), P. Engel (1986) and D. Schwarzenbach

(1993) commence by stating that any isometry on the point

space may be represented by a unimodular matrix F and a shift

vector s. Although such an operation fFjsg is indeed an

isometry on a manifold with constant and null curvature, it

would appear desirable to furnish a proof that this is the only

possible form of isometry in this case. We shall demonstrate

(x2.2) that such a proof arises naturally from an analysis of the

isometries on a Riemannian manifold. In other instances, the

necessity of differential geometry manifests in an even clearer

way: e.g. when determining Poincaré’s group in special rela-

tivity (Das, 1993), even in the simplest case of flat space–time.

As we shall see below, manifold theory is a suitable

framework for dealing with geometry. One might think that it

is just a complicated way of describing the same things as in

the traditional point of view, especially when the space

considered is Euclidean. This is definitely not the case, since

the traditional point of view does not offer the possibility of

studying local features; a property is valid not only in the

neighbourhood of a point, but everywhere, which is quite

restrictive in a sense. This local aspect is of prime importance

in the theory of defects: disclinations, for example, are

described in curved, even non-Riemannian, manifolds using

exterior calculus, Grassman algebras, fibre bundles and the

first homotopy group (Kleman & Friedel, 2008).

The main difference between the theories of manifolds and

vector spaces is that the former treats geometry not only

globally, but also locally. The vectors (in the theory of vector

spaces) are replaced by vector fields (in manifold theory),

even if the field is constant. To each vector corresponds a point

in the manifold, namely the base point of this vector. The

scalar product is replaced by a metric tensor, which is constant

if the manifold is Euclidean. Adopting this point of view is

fundamental because only in this manner is it possible to

properly treat the notion of isometry.

In any case, as soon as we are dealing with a physical object,

we must define an origin point. This can only be done in point

space and the ensuing analysis of isometries yields affine

transformations, not endomorphisms: the Euclidean space has

the structure of a manifold rather than of a vector space.

Further, we should consider that two points are linked by a

curve (in many instances of minimal length) rather than by a

vector. This fact is essential for understanding the behaviour

of modulated structures.

The goal of this article is to show how it is possible to easily

obtain the general form of an isometry on the Euclidean

manifold and how the notions of point-group and space-group

operations become natural in the frame of differential

geometry. These concepts make sense for all crystals, be they

modulated or not; so whenever we say crystal or structure,

both cases will be understood.

2. Riemannian manifolds

The notion of manifold arises from a generalization of objects

like curves and surfaces, the geometrical properties of which



have already been treated by Gauss and his disciple Riemann.

Some pertinent definitions and results from manifold theory,

used throughout this article, are summarized in x2.1. A more

advanced treatment may be found in the monograph by B.

O’Neill (1983).

2.1. Manifold and tangent spaces

A smooth manifold M of dimension n is a Hausdorff

(separated) space such that for every point p 2 M there exists

a homeomorphism ’ between an open neighbourhood U � M

containing p and an open neighbourhood U0 � Rn. Usually, M

can be considered embedded in Rm, m � n. The couple ðU; ’Þ
is called a coordinate system and the couple ðU0; ’�1Þ a (local)

parameterization of M. If ðU1; ’1Þ and ðU2; ’2Þ are two

different coordinate systems such that U1 \ U2 6¼ ;, then

’2 � ’1
�1 : ’1ðU1 \ U2Þ 7!’2ðU1 \ U2Þ is called a change of

coordinates. If ’2 � ’1
�1 is of class C1, we say that the change

of coordinate is smooth. A family A ¼ fðUi; ’iÞ j i 2 Jg of

coordinate systems (J � N) is called an atlas of M ifS
i2J Ui ¼ M. If all changes of coordinates are smooth, we say

that the atlas is smooth. In coordinate language: ðU; ’Þ is a set

of n functions ’ ¼ ðx1; . . . ; xnÞ, xr : M 7!R with

’ða1; . . . ; amÞ = x1ða1; . . . ; amÞ; . . . ; xnða1; . . . ; amÞ
� �

=

ðb1; . . . ; bnÞ 2 R
n, ða1; . . . ; amÞ 2 M � Rm, m � n. If

xrða1 ; . . . ; amÞ ��= urða1 ; . . . ; amÞ ¼ ar, then ’ða1 ; . . . ; amÞ

¼ ða1 ; . . . ; anÞ and ’ ¼ ðu1 ; . . . ; unÞ is the identity map, also

called the natural coordinate system.

The n-dimensional Euclidean space R
n itself may be

understood as a manifold in which the identity map furnishes a

one-coordinate system atlas. The sphere S2
� R

3 is a two-

dimensional manifold. Indeed, a point on S2 may be specified

by three Cartesian coordinates ða1; a2; a3Þ 2 R
3 (with a

constraint on them) or by its latitude and longitude ð�;�Þ.
Here we have m ¼ 3, n ¼ 2 and ’ ¼ ðx1; x2Þ, with

x1ða1; a2; a3Þ ¼ � ��= b1, x2ða1; a2; a3Þ ¼ � ��= b2. Generally

speaking, every surface in three-dimensional Euclidean space

(e.g. cylinder, torus, paraboloid) is a two-dimensional mani-

fold.

Consider now a curve � : I ! M on a manifold M, where

I � R is an interval; let CpðMÞ be the set of all curves ðI; �Þ,
such that 0 2 I and that �ð0Þ ¼ p. The subset of ðI; �Þ in which

all curves have the same derivative at 0 forms an equivalence

class. Such a class is called a tangent vector at p and is noted
_��ð0Þ ¼ ðd=dtÞ�ðtÞ jt¼0; the set of all tangent vectors at p has the

structure of a vector space; it is called the tangent space at p

and is noted TpM. As an example of a tangent vector, we think

of a ship sailing on the sea. At any point p of the sea (on the

Earth’s surface), the ship’s velocity vector is a vector tangent

to the Earth at this point.

For every coordinate system ðx1; . . . ; xnÞ on a manifold M,

the set of derivatives ½ð@=@x1Þ j
p
; . . . ; ð@=@xnÞ j

p
� forms a basis

of the tangent space TpM at p; this basis is called the canonical

basis of TpM.

We shall write TM for the set of all tangent vectors of a

manifold M. A vector v belongs to TM if and only if there

exists a point p 2 M such that v 2 TpM. TM is called the

tangent bundle of M and can be written as TM ¼
S

p2M TpM.

A vector field on an open set W � M is a mapping

Y : W ! TM which assigns a tangent vector Yp 2 TpM to

each point p 2 W.

2.2. Isometries on a Riemannian manifold

A metric tensor g on a smooth manifold M is a symmetric,

positive definite ð0; 2Þ, i.e. two times covariant, tensor field on

M. In other words:

g : TM � TM! R

ðv; wÞ 7! gðv; wÞ;

g associates each point p 2 M with a scalar product gp in the

tangent space TpM at p. A manifold M furnished with a metric

tensor g is called a Riemannian manifold and is noted ðM; gÞ.

The metric tensor is fundamental because it provides

important definitions such as lengths of curves on a manifold

and angles between tangent vectors. Moreover, the manifold

can be seen as a metric space. Indeed, in every connected

manifold we can define the distance between two points p and

q as the length of the curve of minimal length belonging to the

manifold and linking these two points. In many cases, espe-

cially when the manifold has no boundary, this curve is a

geodesic.

Let � be a map from a Riemannian manifold ðM; gÞ into

itself. We then define an application d�p : TpM! T�ðpÞM

which is called the differential map of � at the point p 2 M. In

a coordinate system x ¼ ðx1; . . . ; xnÞ, d�p is represented by

the Jacobian matrix
�
ð@x0i=@x jÞðpÞ

�n

i;j¼1
, where x0 ¼ x � �. A

map � : M! M is called a local isometry if for all p 2 M and

v; w 2 TpM

g d�pðvÞ; d�pðwÞ
� �

¼ gðv; wÞ; ð1Þ

it is an isometry if it is also a diffeomorphism. One might think

that this definition is somewhat artificial and specific to

manifold theory, but it is altogether consistent with our

intuitive notion of isometry. Indeed, consider a

(smooth) curve � parameterized between a and

b; its length is
R b

a

�
g
�

_��ðtÞ; _��ðtÞ
��1=2

dt; as g
�

_��ðtÞ; _��ðtÞ
�
¼

g d��ðtÞð _��ðtÞÞ; d��ðtÞð _��ðtÞÞ
� �

, we deduce that the length of any

curve remains unchanged under an isometry, hence also

distances. Using the same considerations, one shows that the

angle between two curves crossing at a point p remains

unchanged under an isometry of the manifold.

Note that the set of isometries forms a group. In the case

where v ¼ ð@=@xiÞ j
p

and w ¼ ð@=@xjÞ j
p
, with respect to the

coordinate system x ¼ ðx1; . . . ; xnÞ, relation (1) becomes

gijðxÞ ¼
Xn

k;l¼1

@x0k

@xi

@x0l

@xj
gklðx

0
Þ; ð2Þ

where x0 ¼ x � �.

As the simplest example, let us consider the n-dimensional

Euclidean space as a Riemannian manifold endowed with the

natural coordinate system u ¼ ðu1; . . . ; unÞ. By definition, the

metric tensor is constant and represented, in this coordinate

system, by the identity matrix In, the components of which are
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gij ¼ �ij for all 1 
 i; j 
 n, and p 2 M. Relation (2) becomes

here

�ij ¼
Xn

k;l¼1

@u0k

@ui

@u0l

@uj
�kl: ð3Þ

The derivative of this expression with respect to um is

0 ¼
@

@um
�ij ¼

Xn

k;l¼1

 
@2u0k

@um @ui

@u0l

@uj
þ
@u0k

@ui

@2u0l

@um @uj

�
�kl:

Cyclic permutation of indices ðm; i; jÞ in the formula above

yields two similar expressions in ðj; m; iÞ and ði; j; mÞ. Adding

the first two of these and subtracting the third one, we obtain,

after some algebra,

@2u0i

@um @uj
¼ 0;

for all 1 
 i; j; m 
 n and at any point p 2 M. Integrating this

last expression, we find

f i
j
�
�=
@u0i

@u j
¼ constant: ð4Þ

If we integrate again, we finally obtain

u0i ¼
Pn
i¼1

f i
j uj þ si; ð5Þ

where si is a constant and f i
j is the component ði; jÞ of a

constant matrix F, which is, in our case, orthogonal. Indeed,

the matrix expression of relation (3) is tFF ¼ In. In the case in

which the coordinate system is not orthogonal (but still ‘flat’,

i.e. not curved), the matrix F is still constant but is char-

acterized by the relation tFGF ¼ G, where G is the (constant)

matrix representing the metric tensor in this coordinate

system.

3. Curves versus vectors

Knowing that in general manifolds differ from vector spaces,

the jargon must be adapted to this context. Any two points in a

connected manifold can be linked by a curve, but usually not

by a vector. For instance, the trajectory of a ship sailing from

Port Askaig (Scotland) to Port Fairy (Australia) is not a

straight line (the ship is not boring a tunnel through the Earth)

but a curve on the surface of our planet (this curve is usually of

minimal length when there is no continent or isle between the

starting and end points).

In manifold theory, vectors are elements of tangent spaces

(which are vector spaces), not of manifolds. The question is

why vectors and not curves are always used for linking two

points in Euclidean space. To answer this question, the notions

of geodesic and exponential map have to be introduced.

Briefly, a geodesic on a Riemannian manifold is a curve which

can be defined from one of its more important properties, that

is a curve of minimal length; for any two points on a connected

Riemannian manifold without boundary the curve of minimal

length linking these two points is a geodesic. For example,

geodesics are straight lines in Euclidean space and arcs of big

circles on the sphere S2. Let cv be the maximal geodesic (i.e. it

cannot be extended) on a Riemannian manifold M such that

cvð0Þ ¼ p 2 M, ðdcv=dtÞð0Þ ¼ _ccvð0Þ ¼ v, and gTpMTpM, the set of all

vectors v of TpM such that cv is defined at least in ½0 ; 1�. Then,

the exponential map of M at p is the function

expp : gTpMTpM! M

v 7! exppðvÞ ¼ cvð1Þ:

For a fixed v, exppðtvÞ ¼ ctvð1Þ ¼ cvðtÞ, where t 2 R. Thus the

exponential map expp carries lines through the origin of TpM

to geodesics of M through p (see Fig. 1). Note that for each

point p 2 M, there exists a neighbourhood ~UU of 0 in TpM on

which the exponential map expp is a diffeomorphism into a

neighbourhood U of p in M. In simple cases, as for example in

Euclidean space, ~UU ¼ TpM and U ¼ M.

Let Rn be the n-dimensional Euclidean space endowed with

its natural coordinate system u ¼ ðu1; . . . ; unÞ, in which the

components of the metric tensor are gijðpÞ ¼ �ij for all

1 
 i; j 
 n and for all p 2 Rn. Recall that geodesics are

straight lines in this space. Take two points q and p in Rn with

coordinates uq ¼ ðuq
1; . . . ; uq

nÞ and up ¼ ðup
1; . . . ; up

nÞ,

respectively. They are linked by a unique geodesic, a straight

line. This geodesic, linearly parameterized between 0 and 1

(i.e. with a constant velocity) is given by

c : ½0 ; 1� ! R
n

t 7! cðtÞ ¼ uq þ ðup � uqÞt

with cð0Þ ¼ uq and cð1Þ ¼ up; its tangent vector at q is

dcðtÞ

dt

����
t¼0

¼ _ccð0Þ ¼ up � uq
�
�= v: ð6Þ

This vector and the starting point cð0Þ ¼ uq completely char-

acterize the curve c, which will then be noted cv; indeed, one

can write

cvðtÞ ¼ uq þ vt; ð7Þ

and we observe that the end point of cv, namely cvð1Þ ¼ up, can

be seen as the tip of the tangent vector of the curve cv at q:

up ¼ cvð1Þ ¼ uq|{z}
2Rn

þ v|{z}
2TqR

n

: ð8Þ
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Figure 1
Illustration of the exponential map. It carries lines through the origin of
TpM to geodesics of M through p.



In the case where q is the origin point o of the coordinate

system [with coordinates uo ¼ ð0; . . . ; 0Þ ¼ 0], we have

up ¼ cvð1Þ ¼ uo þ v ¼ v, which can be written as expoðvÞ ¼ v.

Even if this expression is perfectly correct, it must be noted

that cvð1Þ is a point of Rn whereas v is an element of ToR
n. This

result is fundamental because it shows that ToR
n and Rn are

not only isomorphic but also geometrically equivalent, that is

isometric (also note that the metric tensor, the components of

which in the natural coordinate system are �ij, 1 
 i; j 
 n, is

constant and equal to the scalar product it generates in the

tangent space).

Let us consider an n-dimensional periodic lattice � in the

Euclidean space Rn; it can be written as

� ¼ fB� j � ¼ ð�1; . . . ; �nÞ 2 Z
n
g; ð9Þ

where the invertible matrix B [2 GLnðRÞ] defines the

geometry of the lattice. The geodesic (straight line) linking the

origin o [with coordinates uo ¼ ð0; . . . ; 0Þ ¼ 0] to any node

of �, and linearly parameterized between 0 and 1, may be

written as

c : ½0 ; 1� ! R
n

t 7! cðtÞ ¼ B�t:

The tangent vector of this geodesic at the origin is

_ccð0Þ ¼ B�:

If we take the tangent vector at the origin of all geodesics

linking the origin to each node of �, we obtain the following

set of vectors:

�o ¼ fB� j � 2 Z
n
g;

which shall be called the representation of the lattice � in

ToR
n. As the metric tensor is constant on Rn and equal to the

scalar product it generates in the tangent space at the origin,

we can conclude that the representation �o of the lattice � in

ToR
n is equal to the lattice � itself.

Let us also try to find the representation of this same lattice

� in the tangent space of Rn at any point q. Any geodesic

linearly parameterized between 0 and 1, linking the point q of

coordinates uq ¼ ðuq
1; . . . ; uq

nÞ to any node of �, can be

written as

c : ½0 ; 1� ! R
n

t 7! cðtÞ ¼ uq þ ðB�� uqÞt:

Its tangent vector at q is

_ccð0Þ ¼ B�� uq:

This last expression shows that the representation �q of the

lattice � in the tangent space TqR
n shares most features with

�: the pattern is completely the same, it is just translated by

�uq (see Fig. 2). This result is in fact completely intuitive: the

translation by �uq compensates for the fact that TqR
n is

shifted from the tangent space at the origin of uq.

At this point, one might think that this derivation brings

nothing new, but is just a more complicated way of describing

known things. These considerations are, however, necessary in

order to treat structures in a unique way. In modulated

structures, atomic positions are those of a basic (or average)

structure (with a three-dimensional space-group symmetry)

on which a periodic wavefunction of the position is applied

(Janssen et al., 2002, 2007; Steurer & Haibach, 2001; van

Smaalen, 2007, 1995). More generally, a modulation is a one-

to-one map H from R
n to Rn. For crystallographic applica-

tions, H is a periodic wavefunction of the position, smooth or

piecewise smooth (in the case of crenel or sawtooth functions).

We can then look at Rn as an n-dimensional manifold M

parameterized in a non-Euclidean way; M is included in Rn

and Rn is included in M; H�1 is a curved coordinate system.

Since M � Rn, any point p of M is also a point in Rn and can

therefore be characterized by the n natural coordinates in Rn.

To illustrate this, let us consider the sphere S2
2 R

3; any point

p on the sphere can be characterized by two parameters �p and

’p; it is also a point in R
3 with (natural) coordinates

up
1 ¼ sin �p cos’p, up

2 ¼ sin �p sin ’p and up
3 ¼ cos �p. Let

HðqÞ and HðpÞ be any two points of M with (natural) coor-

dinates (in R
n) HðuqÞ ¼ h1ðuqÞ; . . . ; hnðuqÞ

� �
and

HðupÞ ¼ h1ðupÞ; . . . ; hnðupÞ
� �

, respectively. They may be

linked in M by a curve parameterized between 0 and 1 as

follows:

c : ½0 ; 1� ! R
n

t 7! cðtÞ ¼ H uq þ ðup � uqÞt
� �

:
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Figure 2
Example of a two-dimensional periodic lattice viewed in the manifold R2

endowed with the natural Cartesian coordinate system and in its tangent
space at q, TqR

2. Note that we could also use the appropriate
crystallographic coordinate system (with respect to the lattice para-
meters); the result would be exactly the same.



Its tangent vector at HðqÞ is

dcðtÞ

dt

����
t¼0

¼ _ccð0Þ ¼ dHqðup � uqÞ
�
�= v; ð10Þ

in components:

vi ¼
Xn

j¼1

@hiðuÞ

@uj

����
q

ðup
j � uq

jÞ; ð11Þ

the point HðpÞ is represented in TqM by the tip of the arrow v.

Note that the curve �, which is in M, therefore also in Rn, is

not a straight line, hence not a geodesic. This does not create a

problem; the important point is that there exists exactly one

curve of the form of � linking the two points q and p; this is the

case, as H is one-to-one and as there exists exactly one straight

line linking two points in R
n. � is the deformation of a

geodesic in Euclidean space, through H; it is the unique curve

starting at q, generated by the curve t 7! In exp
Pn

j¼1 vj @j

� �
,

t 2 ½0 ; 1�. Thus, the ideas used in the definition of the expo-

nential map may be generalized to other families of curves.

Let us consider the example of an n-dimensional modulated

lattice

~�� ¼ fHðB�Þ j � 2 Zn
g;

where B 2 GLnðRÞ and H : Rn
! R

n is a one-to-one map,

and find its representation in any tangent space. Any point of
~�� may be linked to HðoÞ, the chosen origin of M, by a curve,

parameterized between 0 and 1, which is a deformation

through H of a straight line linking the origin o to the corre-

sponding point in the undistorted lattice �:

c : ½0 ; 1� ! R
n

t 7! cðtÞ ¼ HðB�tÞ:

Its tangent vector at HðoÞ is

_ccð0Þ ¼ dHoðB�Þ ��= v�;

in components:

v�
i
¼
Xn

j¼1

@hiðuÞ

@uj

����
o

ðB�Þj:

Thus, the representation of ~�� in THðoÞM is the set

~��HðoÞ ¼ f�ð0ÞB� j � 2 Z
n
g;

where �ð0Þ ��=
�
ð@hi=@ujÞð0Þ

�n

i;j¼1
. This is a perfectly periodic

lattice of translations, in the sense that it has the structure of a

finite free Z-module; it corresponds to a linear deformation of

� through the matrix �ð0Þ.
If we proceed as before, just replacing Hð0Þ by any point of

M, for instance HðqÞ, we obtain the curve

c : ½0 ; 1� ! R
n

t 7! cðtÞ ¼ H uq þ ðB�� uqÞt
� �

;

the tangent vector of which at HðqÞ is

_ccð0Þ ¼ dHqðB�� uqÞ
�
�= v�;

in components:

v�
i
¼
Xn

j¼1

@hiðuÞ

@u j

����
q

ðB�� uqÞ
j:

Thus we see that the representation of ~�� in any tangent space

THðqÞM of M is a periodic lattice, i.e. a finite free Z-module,

which can be written as

~��HðqÞ ¼ f�ðuqÞ ðB�� uqÞ j � 2 Z
n
g;

where �ðuqÞ
�
�= ð@h

i=@ujÞðuqÞ
� �n

i;j¼1
. It corresponds to the lattice

� distorted by the matrix �ðuqÞ and eventually translated.

Note that this result holds for any one-to-one map H, periodic

or not; the only condition being that H be smooth on the

points where we differentiate it (see Fig. 3).

We can see that the viewpoint just presented provides a

common playground for crystals. By designing tools and

spaces for this task, the notion of aperiodicity in modulated
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Figure 3
Example of a two-dimensional smooth modulated lattice. The top
picture was obtained by taking the previous example and applying the
map H, which is given by ðu1; u2Þ 7!

�
u1 þ A sinðku1 � au2Þ;

u2 þ B sinðku1 � au2Þ
�
. The middle and bottom pictures show the

representation of the modulated lattice in the tangent spaces at HðoÞ
and HðqÞ, respectively. In these spaces the lattice has a normal periodicity.



structures disappears. As mentioned previously, vectors are

elements of vector spaces and not of manifolds; to link two

points on a manifold one uses a curve and not a vector; vectors

are used in tangent spaces. In the Euclidean case, curves are

straight lines (geodesics) and the end point of such a curve can

be seen as the tip of a tangent vector at the starting point of

the curve; manifold and tangent space at any point have

therefore very close geometrical properties, especially when

the tangent point is at the origin (of the coordinate system), in

which case these properties completely merge. What is usually

called point space is in fact just the Euclidean space seen as a

manifold (endowed with the natural coordinate system), while

the associated vector space is any tangent space of this

manifold (at a selected point). In a crystal, atomic positions

are normally described in point space, in the manifold. But as

each of these atoms can be seen as an end point of a straight

line starting from the origin, therefore as the tip of a tangent

vector of the tangent space at the origin, the positions of these

atoms might just as well be described in the tangent space at

the origin. Often, this second description is used. But are those

using it conscious of the fact that they are indeed working in

the vector space (tangent space at the origin) and not in point

space? The confusion between the Euclidean manifold and its

tangent space at the origin arises almost naturally, and it is

perhaps the reason why vectors are used to describe the

positions of atoms in modulated structures, and why these

structures are said to be aperiodic. Consequently, we can draw

the following conclusion: modulated crystals are not aperiodic,

they have normal vector periodicity in any tangent space, and

curve periodicity in the manifold.

4. Unified description of symmetry operations

A unified description of crystals is not fully consistent as long

as a common formalism for symmetry operations is not

obtained. The notion of a symmetry operation of a structure

has already been tackled in x3, when introducing the basic

definition of a modulated structure. However, a clear defini-

tion is essential. This will be done after discussing the concept

of the action of the Euclidean isometry group on a manifold M

parameterized by a one-to-one map H : Rn
! M.

4.1. Euclidean case

Just as in the theory of vector spaces a linear isometry acts

not only on the tip of the arrow but on the whole vector, it is

here necessary to study how an isometry acts on whole curves

and not on points only. Recall that a straight line (geodesic),

linearly parameterized between 0 and 1, and linking two

points q and p, with coordinates uq ¼ ðuq
1; . . . ; uq

nÞ and

up ¼ ðup
1; . . . ; up

nÞ, respectively, may be written as

c : ½0 ; 1� ! R
n

t 7! cðtÞ ¼ uq þ ðup � uqÞt;

its tangent vector at q is v ��= up � uq. Let us take an isometry �
in Rn. As established in x2.2, it transforms any point of coor-

dinates u into another one, of coordinates u0, according to the

relation

u0 ¼ Fuþ s; F 2 OnðRÞ and s 2 Rn:

Any point of the curve, therefore the whole curve, will then

become

c0ðtÞ ¼ FcðtÞ þ s ¼ F uq þ ðup � uqÞt
� �

þ s:

The starting point of c0 is q0, with coordinates c0ð0Þ ¼ Fuq þ s,

and the end point is p0 with coordinates c0ð1Þ ¼ Fup þ s. The

tangent vector of c0 at q0 is

dc0ðtÞ

dt

����
t¼0

¼ _cc0ð0Þ ¼ Fðup � uqÞ ¼ Fv ��= v0:

Let us take some time to interpret these calculations. Note first

that F is the matrix representation of d�q, the differential map

of � at q (in fact F ¼ d� at any point). Then recall that the

differential map d� carries vectors of the tangent space at a

point, let us say q, to vectors of the tangent space at the point

�ðqÞ:

d�q : TqR
n
! T�ðqÞR

n

v 7! d�qðvÞ ¼ v0:

Thus, we conclude that there are two ways to determine the

image of a point p through an isometry �. The first, traditional,

one consists of applying the matrix and translation parts to up,

the coordinates of p:

u0p ¼ Fup þ s:

The second one consists of considering the point p as the tip of

a tangent vector v at q (it is then an element of the tangent

space at q) and applying the differential map d�q of � to v in

order to obtain the vector v0 in the tangent space at �ðqÞ, the

tip of which corresponds to a point in Rn, namely �ðpÞ. This

alternative way is in fact just a consequence of the Taylor

development of �. Indeed, as d� corresponds, in the natural

coordinate system, to a constant matrix F (independent of the

point in the manifold), its differential map dðd�Þ vanishes

everywhere. We have

up ¼ uq þ v; v ¼ ðup � uqÞ ð12Þ

and

�ðupÞ ¼ �ðuq þ vÞ ¼ �ðuqÞ þ d�qðvÞ: ð13Þ

In the general case, the left part of equation (13) is a good

approximation to the right side if v is small; but the larger v is,

the larger the rest of the higher-order terms are. In our case, as

� corresponds to an affine map, there is no order higher than

one and equation (13) holds for every v. [Just note that we

used the same letter � for the isometry and for its repre-

sentation in coordinates, which is not disturbing in this

context.]

One might wonder why such an elaborate procedure is

needed to find the image of a point. For one point only, it is

indeed needless to do so. But by taking a large number of

points, for instance nodes on an infinite lattice of translations

[see expression (9)], it becomes immediately more useful.
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Indeed, considering one point q as an origin point and using

the technique presented in x3 (i.e. we link all nodes to q by

straight lines linearly parameterized between 0 and 1, and

calculate the tangent vectors vq;B� of all these curves at q), we

obtain the representation of this lattice in the tangent space

TqR
n at q. The image of all these nodes through a symmetry

operation � of the lattice can be obtained by calculating the

image �ðqÞ of the point q and then finding the image of the

vectors vq;B� through the differential map d�q (which is

linear). This means that the translation part of the symmetry

operation appears only in the transformation of one point, the

point q. The image of all others, the nodes in our case, are

given by using the linear map d�q. All this is summarized in

the expression d�q : TqR
n
! T�ðqÞR

n.

As an example, we consider the two-dimensional square

lattice � ¼ fa� j � 2 Z2
g, where a 2 Rþ. It has, for example,

a fourfold point q of coordinates ða=2; a=2Þ. A rotation � of

�=2 around q may be written, in coordinates, as

u01

u02

� �
¼

0 �1

1 0

� �
u1

u2

� �
þ

a

0

� �
: ð14Þ

A node ða�1; a�2Þ of this lattice becomes að��2 þ 1Þ; a�1
� �

.

Let ~qq be an ‘origin point’, with coordinates ðu ~qq
1; u ~qq

2Þ. Any

node of the lattice can be represented in the tangent space at ~qq
by taking the tangent vector at ~qq of straight lines, linearly

parameterized between 0 and 1, linking ~qq to the node

considered. We obtain

v ¼
a�1 � u ~qq

1

a�2 � u ~qq
2

� �
:

If we apply the rotation around q to the point ~qq, we obtain its

image �ð ~qqÞ with coordinates ðu0 1~qq ; u0 2~qq Þ ¼ ð�u ~qq
2 þ a; u ~qq

1Þ. This

image corresponds to a new ‘origin point’. Applying now the

matrix part of the rotation � to the vectors v, we obtain their

image:

v0 ¼
�a�2 þ u ~qq

2

a�1 � u ~qq
1

� �
;

which are elements of T�ð ~qqÞR
n. These image vectors can be

seen as tangent vectors at �ð ~qqÞ of straight lines, linearly

parameterized between 0 and 1. The end points of these lines

correspond to the tip of those tangent vectors. This means that

by taking the coordinates of the point �ð ~qqÞ and adding the

components of v0, the coordinates of the image through � of

the lattice nodes are obtained; we have

�u ~qq
2 þ a

u ~qq
1

� �
þ
�a�2 þ u ~qq

2

a�1 � u ~qq
1

� �
¼

að��2 þ 1Þ

a�1

� �
;

which is exactly the same result as if � were applied directly to

any node in the manifold. Note that the ‘origin point’ ~qq can be

any point of the manifold, in particular also the ‘real origin

point’ o of the coordinate system; � then carries o to �ðoÞ, the

new ‘origin point’ (see Fig. 4).

We then reach the interesting conclusion that a symmetry

operation (in Euclidean space) has two different representa-

tions, one in the manifold and another one in the tangent

spaces. Moreover, these representations correspond to

concepts very well known in crystallography: space-group

operation and point-group operation (Wondratschek, 2002).

Indeed, a space-group operation is an affine transformation of

a point space: this is nothing but an isometry on the Euclidean

manifold. A point-group operation is a linear map: this is

nothing but an isometry between two tangent spaces. The

main difference between the point of view of differential

geometry and the traditional one certainly lies in the fact that

not only one (associated) vector space but an infinity are

considered; at each point of the manifold there exists a tangent

space. Then, a point-group operation is in general not an

endomorphism of a vector space but a linear map between two

tangent spaces. This means, in particular, that the translation
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Figure 4
Representations of a symmetry operation in a two-dimensional square
lattice. (1) shows the manifold representation of the fourfold rotation �
on the manifold. Two isometric triangles are drawn, the first one is
composed of the points q, ~qq and p, the second one of their image. (2) and
(20) show the tangent-space representation of the fourfold rotation. The
‘origin point’ ~qq (which could also be the real origin point o) is carried to
the ‘new origin point’ �ð ~qqÞ. The vectors v~qqp and v ~qqq are carried to v0~qqp and
v0~qqq, respectively, through the differential map d� ~qq. In (3) and (30), we can
observe how convenient it is to chose the ‘origin point’ ~qq at the fixed point
q; to find the image of p, we only need to apply the tangent application
d�q to the vector vqp.



part of a symmetry operation does not completely vanish: it

appears in the image of the ‘origin point’, i.e. in the fact that

vectors of a tangent space are carried to vectors of another

tangent space. Realizing this, we can use the manifold repre-

sentation as well as that in tangent space. Both contain the

same information; it is just presented in a different way,

whereas in the traditional point of view the information about

translation completely disappears when the point-group

operation of an isometry is considered. This is due to the fact

that only one vector space is considered and no advantage is

gained from local geometry.

Note that from the point of view of differential geometry,

there are special cases where a point-group operation, that is

the differential map of an isometry �, is an endomorphism, i.e.

a linear map from a tangent space into itself. This happens

when the isometry has a fixed point q. Considering the tangent

space at this point and interpreting all other points of the

Euclidean manifold as the tips of tangent vectors at q, we find

that the differential map d�q carries vectors of the tangent

space at q to vectors of the tangent space at �ðqÞ ¼ q

(d�q : TqR
n
! TqR

n). In the example presented above, we

effectively observe that in the tangent space at the rotation

point q, a node of coordinates ð�1; �2Þ is given by the tip of the

vector a ð�1 � 1
2Þ ; a ð�2 � 1

2Þ
� �

in TqR
n. Applying then the

matrix part (the differential map) of �, we obtain the vector

�a ð�2 � 1
2Þ ; a ð�1 � 1

2Þ
� �

, also in TqR
n, which corresponds, in

the manifold, to the point að��2 þ 1Þ; a�1
� �

.

4.2. The modulated case

Modulated structures are characterized by a periodic

deformation of a basic structure, which has normal Euclidean

space-group symmetry (Janssen et al., 2002, 2007; Steurer &

Haibach, 2001; van Smaalen, 2007, 1995). In mathematical

language, an advantageous way of describing the symmetry of

such structures consists of using the action of Euclidean space

groups on a manifold [the basic definitions of action of groups

on manifolds can be found in the monograph by B. O’Neill

(1983)]. In fact, we have already used this concept in the

Euclidean case, where the action of isometries was repre-

sented by a matrix and a translation part. For modulated

structures, this is somewhat more complicated owing to the

periodic deformation of the basic structure. Indeed, for a

normal periodic structure S, which has a symmetry operation

�, the corresponding modulated structure HðSÞ, where

H : Rn
! R

n is a one-to-one map, has a similar symmetry

operation ~��, which differs from � in that it is sandwiched

between H and H�1:

~�� ¼ H � � �H�1:

Then, as �ðSÞ ¼ S, we have

ðH � � �H�1Þ
�
HðSÞ

�
¼ H

�
�ðSÞ

�
¼ HðSÞ:

As in the Euclidean case, let us see how such an operation

acts on curves. Recall that two points HðqÞ and HðpÞ of a

manifold M (parameterized by H), with coordinates HðuqÞ

and HðupÞ, respectively, may be linked by a curve, para-

meterized between 0 and 1, in the following manner:

c : ½0 ; 1� ! R
n

t 7! cðtÞ ¼ H uq þ ðup � uqÞt
� �

;

its tangent vector at HðqÞ is v ��= dHqðup � uqÞ. Take now a

Euclidean isometry �, which can be written as a matrix F and

translational part s, and sandwich it between H and H�1. Any

point of the curve, therefore the whole curve, will become

under this transformation

c0ðtÞ ¼ H �ðuq þ ðup � uqÞ tÞ
� �

:

The starting point of c0 is Hðq0Þ, with coordinates

c0ð0Þ ¼ H �ðuqÞ
� �

, and the end point is Hðp0Þ, with coordinates

c0ð1Þ ¼ H �ðupÞ
� �

. The tangent vector of c0 at Hðq0Þ is

dc0ðtÞ

dt

����
t¼0

¼ _cc0ð0Þ ¼ dH�ðqÞ d�qðup � uqÞ
� �

�
�= v0:

As ðup � uqÞ ¼ ðdHqÞ
�1
ðvÞ, the previous expression becomes,

using matrix notation,

_cc0ð0Þ ¼ v0 ¼ �
�
�ðqÞ

�
F�ðqÞ�1

v;

where � and F are the matrix representations of dH and d�q,

respectively. As in the Euclidean case, we notice that there are

two ways of writing a symmetry operation, i.e. how to obtain

the image of a point p. The first one consists of the application

of ~�� ��= H � � �H�1 to the point HðpÞ, with coordinates HðupÞ:

HðupÞ 7!
~�� HðupÞ
� �

¼ H �ðupÞ
� �

:

In the second one, we first find the vector in the tangent space

at HðqÞ, which corresponds to the tangent vector at HðqÞ of

the curve c (parameterized between 0 and 1) linking HðqÞ to

HðpÞ. Then we apply the linear map �
�
�ðqÞ

�
F�ðqÞ�1, and we

finally obtain a vector in the tangent space at Hðq0Þ, which is

the tangent vector at Hðq0Þ of the curve c0 (parameterized

between 0 and 1 in the same way) linking Hðq0Þ to Hðp0Þ. Note

that the correspondence between curves (parameterized

between 0 and 1) and their tangent vector at the starting point

is unique. Thus, as in the Euclidean case, this second way of

describing a symmetry operation contains as much informa-

tion as the first one. This alternative is perhaps not so useful if

we are interested in the image of one point only, but it is very

practical when considering a large number of points, as in a

lattice or a crystal structure. Moreover, it is also particularly

user-friendly because symmetry operations are represented by

linear maps.

Let us illustrate this by the example of a two-dimensional

modulated square lattice ~�� ¼ fHða�Þ j � 2 Z2
g, where

a 2 Rþ. As seen before, the corresponding non-modulated

lattice has a fourfold point of coordinates ða=2 ; a=2Þ. Since a

rotation � of �=2 around this point is given in coordinates by

relation (14), ~�� ¼ H � � �H�1 is a symmetry operation of ~�� .

Let Hð ~qqÞ be an ‘origin point’, with coordinates Hðu ~qqÞ. A curve,

parameterized between 0 and 1, linking this point to any node

of ~�� , may be written as t 7! H u ~qq þ ða�� u ~qqÞt
� �

¼ cðtÞ. The

components of its tangent vector at ~qq are
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v ¼
!1

1ð ~qqÞ !1
2ð ~qqÞ

!2
1ð ~qqÞ !2

2ð ~qqÞ

� �
a�1 � u ~qq

1

a�2 � u ~qq
2

� �
;

where !i
jð ~qqÞ ¼ ð@h

i=@ujÞj
~qq
, 1 
 i; j 
 2, are the components of

the matrix �ð ~qqÞ, which represents dH ~qq. By applying

H � � �H�1 to Hð ~qqÞ [with coordinates Hðu ~qqÞ], we obtain its

image Hð ~qq0Þ ¼ H
�
�ð ~qqÞ

�
which can be considered as a new

‘origin point’. Then, taking the matrix part of �, sandwiching it

between �
�
�ð ~qqÞ

�
and �ð ~qqÞ�1, we obtain the matrix product

!1
1ð ~qq
0Þ !1

2ð ~qq
0Þ

!2
1ð ~qq
0Þ !2

2ð ~qq
0Þ

� �
0 �1

1 0

� �
$1

1ð ~qqÞ $1
2ð ~qqÞ

$2
1ð ~qqÞ $2

2ð ~qqÞ

� �
;

where $i
jð ~qqÞ, 1 
 i; j 
 2 are the components of the matrix

inverse to �ð ~qqÞ. This product of matrices transforms the vector

v, of THð ~qqÞM, into the vector

v0 ¼
!1

1ð ~qq
0Þ !1

2ð ~qq
0Þ

!2
1ð ~qq
0Þ !2

2ð ~qq
0Þ

� �
�a�2 þ u ~qq

2

a�1 � u ~qq
1

� �
;

of THð ~qq0ÞM. Moreover, this vector is the tangent vector at

Hð ~qq0Þ ¼ H
�
�ð ~qqÞ

�
of the curve parameterized between 0 and 1

linking Hð ~qq0Þ to the image of the nodes of the modulated

lattice (see Fig. 5).

Following this last example and our previous calculations, it

is apparent that all the concepts introduced in the Euclidean

case may be extended to modulated structures. We can

therefore give the following general definitions.

(1) The n-dimensional point space is an n-dimensional (flat)

manifold parameterized by a one-to-one map H : Rn
! R

n. If

H is the identity map, this manifold is just Rn endowed with

the natural coordinate system; hence it corresponds to the n-

dimensional Euclidean space. When H is a periodic defor-

mation of Rn, the manifold corresponds to an n-dimensional

modulated space in which modulated structures are described.

This manifold corresponds essentially to Rn; it is just endowed

with a curved coordinate system (and not the natural one).

(2) The associated vector space is a tangent space of the

manifold (the point space) at a particular point. Thus, as there

are an infinity of tangent spaces, there is not just one asso-

ciated vector space but an infinity. All these tangent spaces are

isomorphic. In the Euclidean manifold, they just happen to be

‘geometrically equivalent’ in the sense that they all have the

same canonical (orthonormal) basis. (This is probably the

reason why they are often merged and why one speaks about

one and not several associated vector spaces.)

(3) A space-group operation is a map which acts in the point

space, in the manifold, in which a (modulated) crystal struc-

ture is described. In coordinates, such an operation may be

written as H � � �H�1, where H is the parameterization of the

manifold and � an element of a discrete subgroup of the

isometry group of the Euclidean space. This subgroup contains

all symmetry operations leaving the average crystal structure

invariant. Thus, H � � �H�1 leaves the corresponding modu-

lated structure invariant as well. Note that as all � form a

group, the set of all H � � �H�1 also has the structure of a

group. In the case where H is the identity map, the space

(hence the crystal) is not modulated and H � � �H�1 ¼ �.

(4) A point-group operation is a linear map between two

tangent spaces of the manifold in which the crystal structure

exists. It corresponds to the differential map of the space-

group operation �. In matrix notation, such an operation may

be written as �ðq0ÞF�ðqÞ�1, where � and F are the matrix

representations of the differential maps dH and d�, respec-

tively, and q0 ¼ �ðqÞ. As all elements � which leave an average

structure invariant form a group, so do the matrices F repre-

senting d�, hence �ðq0ÞF�ðqÞ�1. In the case where H is the

identity map, we have simply �ðq0ÞF�ðqÞ�1
¼ F.
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Figure 5
Representations of a symmetry operation in a two-dimensional
modulated square lattice. As in the Euclidean example, (1) shows the
manifold representation of the ‘fourfold points’ H � � �H�1. The two
‘triangles’ HðqÞ, Hð ~qqÞ, HðpÞ and HðqÞ, Hð ~qq0Þ, Hðp0Þ, the edges of
which are not straight lines but curves, are also represented. (2) and (20)
show the tangent-space representation of �. Note the difference of the
shape of the lattice in THð ~qqÞM and THð ~qq0 ÞM. (3) and (30) illustrate
the situation in THðqÞM; as HðqÞ is a fixed point, the differential map
d ~��q
�
�= dHq � d�q � ðdHqÞ

�1 is an endomorphism of the tangent space
at HðqÞ.



Note once again that a symmetry operation in the tangent-

space representation gives as much information as in the

manifold representation. A point-group operation is usually

not an endomorphism of a vector space (as is the case in the

traditional point of view), but is a linear map between two

tangent spaces. Thus, the translation part does not vanish; it

appears in the image of a chosen tangent point.

A last remark concerning H. We have always considered the

map H to be smooth everywhere. If we want to describe all

modulated structures, we also need to include the case where

H is smooth piecewise only. In such a case, there exist some

points where the derivative of H does not exist. However, all

these points form a set of measure zero and it is thus always

possible to find points where the tangent space exists. As the

set of symmetry operations of a crystal structure is countable,

one can always find two points where tangent spaces do exist,

the second point being the image of the first one through the

symmetry operation.

5. One-dimensional modulated structure

In order to illustrate the formalism developed in this article

and compare it with the superspace model, nothing is better

than to treat a concrete example of a modulated crystal. A

one-dimensional structure will be considered, as the visuali-

zation of figures becomes difficult in three dimensions and

impossible in more than three. Let S be a one-dimensional

non-modulated structure with linear group p1, containing

three atoms in a unit cell. According to the symmetry group,

two of the three atoms are identical, one atom � and two

atoms 	 are located in a unit cell. Their positions are

u� ¼ a� and u	 ¼ a�� b; � 2 Z;

where a 2 Rþ is the unit-cell parameter and 0< b< 1
2 a.

Consider further a sinusoidal modulation, such that the atoms

� and 	 lie on the positions

x� ¼ a�þ A� sinð
a�Þ;

x	1
¼ a�þ bþ A	 sin½
ða�þ bÞ þ ’�;

x	2
¼ a�� bþ A	 sin½
ða�� bÞ � ’�;

where 
; ’;A�;A	 2 R (these parameters may in fact be

chosen positive).

In the superspace formalism, one extends the modulated

structure into a two-dimensional vector space endowed with

the (non-orthonormal) basis f2a1; 2a2g. The components of

these two vectors, with respect to an orthonormal basis, are

2a1 ¼
a

�
a=
?

� �
; 2a2 ¼

0

�1=
?

� �
;

where 
? is an arbitrary constant. The first component of 2a1 is

the lattice parameter of the average structure in the external

space, whereas the second one is 
a times the component of

2a2 in the internal space (which is perpendicular to the

external space). The two-dimensional structure is shown in

Fig. 6. The pattern has twofold rotation symmetry around

points of coordinates ðn1=2Þ 2a1 þ ðn
2=2Þ 2a2, where n1; n2 2 Z.

The matrix part of these symmetry operations is

�1 0

0 �1

 !
;

the element ð1; 1Þ of which corresponds to the inversion

operation of the average structure.

In the formalism based on differential geometry, the whole

one-dimensional space is modulated (distorted) by a map and

the modulated structure is ‘periodic’ in this distorted space.

Let us first build this map, using the bump function

u 7! %sðuÞ ¼
expf1� ½s2=ðs2 � u2Þ�g when juj< s

0 when juj � s;

	
where s 2 Rþ. It is smooth, even, and reaches its maximum

value 1 at u ¼ 0. Let us take this function, fix s ¼ 1
2 b, and shift

it in such a way as to have the maximum at the position u	 of

one of the 	 atoms (in the average structure). We obtain the

following function u 7! %ðu� u	Þ, where

%b=2ðu� u	Þ

¼
expf1� fb2=½b2 � 4 ðu� u	Þ

2
�g; ju� u	j< b=2

0; ju� u	j � b=2:

(
With this tool, it is easy to build the one-to-one modulation

map h : R! R. It is simply given by

u 7! hðuÞ ¼ 1� %b=2ðu� u	1
Þ � %b=2ðu� u	2

Þ
� �

f ðuÞ

þ %b=2ðu� u	1
Þ gðuÞ þ %b=2ðu� u	2

Þ gðuÞ;
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Figure 6
Superspace representation of a one-dimensionally modulated structure.
(1) represents the average one-dimensional structure, (2) the corre-
sponding modulated structure and (3) shows the extension of the
modulated structure into two-dimensional superspace. Atoms are no
longer points, but lines. Twofold points appear in the two-dimensional
pattern.



where

f ðuÞ ¼ uþ A sinð
uÞ;

gðuÞ ¼ uþ B sinð
uþ ’Þ;

gðuÞ ¼ uþ B sinð
u� ’Þ;

u	1
and u	2

are the positions of the two atoms 	. When u ¼ u�,

we see that hðu�Þ ¼ x�, and when u ¼ u	i
, we have

hðu	i
Þ ¼ x	i

, i ¼ 1; 2. Through h, the image of any point p with

coordinate up, for instance such that a� b< up < a, is

hðupÞ ¼ 1� %b=2ðup � u	2
Þ

� �
f ðupÞ þ %b=2ðup � u	2

Þ gðupÞ

and the differential map of h at this point is

dhp ¼ �d%b=2;p f ðupÞ þ ½1� %b=2ðup � u	2
Þ� dfp

þ d%b=2;p gðupÞ þ %b=2ðup � u	2
Þ dgp;

where

d%b=2;p ¼ �
8b2ðup � u	2

Þ

b2 � 4ðup � u	2
Þ

2
exp



1�

b2

b2 � 4ðup � u	2
Þ

2

�
;

dfp ¼ 1þ 
A cosð
upÞ;

dgp ¼ 1þ 
B cosð
up � ’Þ:

The positions of the � and 	 atoms of our one-dimensional

modulated structure in the tangent space at hðpÞ are then

v� ¼ �ðpÞða�� upÞ;

v	 ¼ �ðpÞða�� b� upÞ;

where �ðpÞ is the (1� 1) matrix representing dhp; it is in fact

just a number, which provides a kind of scale in tangent space.

Thus, the structure in the tangent space has vector periodicity,

as it has the structure of a Z-module.

Let us consider the inversion operation, the symmetry

element (the fixed point) of which in the average structure lies

on 1
2a�, � 2 Z. Let us consider the fixed point localized at a.

The corresponding operation � may be written in coordinates

as u 7! �ðuÞ ¼ �uþ 2a. In our modulated structure,

this operation acts on points of the modulated

space as hðuÞ 7! ~��
�
hðuÞ

�
¼ h

�
�ðuÞ

�
¼ hð�uþ 2aÞ, where

~�� ¼ h � � � h�1. The point hðaÞ is a fixed point of the opera-

tion and may be called a symmetry element as well.

As seen before, this symmetry operation also has a tangent-

space representation. The ‘origin’ point hðupÞ is transferred to

a new ‘origin’ point h
�
�ðupÞ

�
through ~�� and

d ~��p : ThðpÞM! Thð�ðupÞÞ
M

carries tangent vectors at hðpÞ into tangent vectors at h
�
�ðpÞ

�
(note that M is mostly R, it is just parameterized by the map

h). Thus, the image of the vectors v� and v	 through d ~��p is

v0� ¼ d ~��pðv�Þ ¼ �
�
�ðpÞ

�
F�ðpÞ�1�ðpÞða�� upÞ

¼ �
�
�ðpÞ

�
ð�a�þ upÞ;

v0	 ¼ d ~��pðv	Þ ¼ �
�
�ðpÞ

�
F�ðpÞ�1�ðpÞða�� b� upÞ

¼ �
�
�ðpÞ

�
ð�a�� bþ upÞ;

where �
�
�ðpÞ

�
is the (1� 1) matrix representing dh�ðpÞ and

F ¼ �1 is the (1� 1) matrix representing d�, the differential

map of the (Euclidean) inversion operation � (see Fig. 7).

These vectors correspond exactly to the points in the manifold

obtained by applying ~�� to the atomic positions in the modu-

lated structure. Notice that in the case where up ¼ a,
~�� hðupÞ
� �

¼ hðupÞ and d ~��p is an endomorphism of the tangent

space at hðpÞ.

This example illustrates well that the symmetry of modu-

lated structures can be described without adding dimensions,

i.e. by remaining in the basic space. The notions of space-

group and point-group operations hold for non-distorted as

well as for modulated crystals, without considering an addi-

tional dimension. In the formalism developed in this article, a

symmetry operation is effectively no longer represented by an

affine map. By using the tangent spaces, it can, however,

always be represented by a linear map. Another difference

between the superspace formalism and the model developed

in this article is that the first imposes restrictions on the shape

of the modulation and the modulation wavevector, whereas

the second does not. Indeed, in the previous one-dimensional

example, the pattern in Fig. 6 can be left invariant under

rotations of angle � only because the sinusoidal function is

also left invariant under the same rotations. With the model

based on differential geometry, the modulation can have any

shape. Typically, the modulation applied to the square lattice

in Fig. 5 is allowed in the formalism developed in this article,

whereas it is forbidden in the superspace model; indeed, as the

average square lattice is left invariant under a rotation of

angle �=2, a modulation along one axis would necessarily

imply a same modulation along the second one.

There is a priori not only one possible construction of the

parameterization H. Indeed, one is ultimately interested in the

precise shape of H only at the (displaced) positions of the
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Figure 7
Representation of a one-dimensional modulated structure in tangent
space. As in Fig. 6, (1) and (2) show the average and modulated structure,
respectively, and (3) shows the representation of the modulated structure
in the tangent space at hðpÞ. After the application of the differential map
d ~��p (the ‘inversion’ map), which carries vectors of the tangent space at
hðpÞ to vectors of the tangent space at ~��

�
hðpÞ

�
¼ h

�
�ðpÞ

�
, we obtain (4),

which corresponds exactly to the representation of the modulated
structure in the tangent space at ~��

�
hðpÞ

�
.



centres of the atoms in a unit cell; between the atoms, the

shape of H seems less important.

The modulation of each atom is a periodic wavefunction of

the position. The connection between each of these functions

can be obtained by using smooth homotopy; this is what has

been done in the previous one-dimensional example: from the

atom � to the atoms 	 the modulation of � smoothly vanishes

and that of 	 smoothly appears. The smoothness, which is

guaranteed by the bump function (used in the example),

ascertains that the parameterization H is as smooth as

possible, hence that M is a manifold. To see more concretely

how it works, we take the example of a two-dimensional

structure containing three atoms �, 	 and �, each of them

being modulated by a different function H�, H	 and H� . Let us

consider the coordinate system x ¼ ðx1; x2Þ and suppose that

the positions of the atoms in the average structure are

x� ¼ ðx�
1; x�

2Þ, x	 ¼ ðx	
1; x	

2Þ and x� ¼ ðx�
1; x�

2Þ. In the

modulated structure, the positions of the atoms are

h�
1
ðx�Þ; h�

2
ðx�Þ

� �
¼ x�

1
þ ~hh�

1
ð
1x�

1
Þ; x�

2
þ ~hh�

2
ð
1x�

1
Þ

� �
h	

1ðx	Þ; h	
2ðx	Þ

� �
¼ x	

1 þ ~hh	
1ð
1x	

1Þ; x	
2 þ ~hh	

2ð
1x	
1Þ

� �
h�

1
ðx�Þ; h�

2
ðx�Þ

� �
¼ x�

1
þ ~hh�

1
ð
1x�

1
Þ; x�

2
þ ~hh�

2
ð
1x�

1
Þ

� �
;

where Hi ¼ ðhi
1; hi

2
Þ and ~HHi

�
�= ð ~hhi

1; ~hhi
2Þ, i ¼ �; 	; �, ~HHi being

a periodic wavefunction of the position. Whereas all the atoms

of a unit cell in a modulated structure have a different

modulation, the wavelength of all these functions is the same.

A parameterization H may be obtained by smoothly distorting

one of the Hi to another one. Without restriction, one can

suppose that x�
2 < x	

2 < x�
2. Then, one needs to find a smooth

path from H�ðx
1; x�

2Þ to H	ðx
1; x	

2Þ, another one from

H	ðx
1; x	

2Þ to H�ðx
1; x�

2Þ, and finally, by periodicity, another

one from H�ðx
1; x�

2Þ to H�ðx
1; x�

2 þ 1Þ. Using the bump

function %, we write

Hðx1; x2
Þ ¼ h1

ðx1; x2
Þ; h2
ðx1; x2

Þ
� �

;

where

h j
ðx1; x2

Þ ¼ x j
þ 1� %s	

ðx2
� x	

2
Þ � %s�

ðx2
� x�

2
Þ

� 
~hh�

j
ð
1x1
Þ

þ %s	
ðx2
� x	

2
Þ ~hh	

j
ð
1x1
Þ þ %s�

ðx2
� x�

2
Þ ~hh�

j
ð
1x1
Þ;

with s	 þ s� 
 x�
2 � x	

2, s	 
 x	
2 � x�

2 and s� 
 x�
2 þ 1� x�

2,

in order that the bumps have an appropriate width. The

representation of the parameterization H is shown in Fig. 8.

If we are interested in the positions of the centres of the

atoms only, the parameterization H is not unique, as there are

many smooth paths to go from one modulation function to

another one. In fact, if we consider the electron density of the

whole structure and could compare it with the electron density

of the corresponding average structure, we might obtain a

unique expression for the parameterization H, as an electron

density is a function which is non-negative not only close to

the centres of atoms but everywhere.

6. Conclusion and perspectives

This analysis does not aim at completely changing all practical

calculations. Rather we have shown that there exist some

mathematical tools particularly suited for the description of

certain physical phenomena. Differential geometry offers a

suitable framework for the description of crystals. Its tools and

spaces turn out to be tailored to demonstrating the same

concepts as those used by crystallographers in quite a natural

way. In particular, we see that there are two equivalent ways of

finding the image of a point through a symmetry operation,

one directly in the manifold, the second one using tangent

spaces.

One might criticize the fact that the position of atoms (of a

crystal structure) in the tangent space does not always corre-

spond to their real position in the structure. This is right, but a

one-to-one correspondence between vectors in the tangent

space and points in the manifold always exists. Thus, as soon as

the image of a vector (representing a point) in the tangent

space is given, the corresponding image in the manifold can be

obtained. Moreover, the representation of a modulated

structure in superspace does not correspond to physical reality

either; the atoms are not points but lines, surfaces or volumes,

and if the real three-dimensional structure has to be derived, a

section of the superspace structure needs to be considered.

Thus, some effort is required in any case; either one needs

additional dimensions or one considers the tangent-space

representation.

It would seem from the literature dedicated to modulated

structures that any symmetry operation must be represented

by a matrix and a translational part, as if this were a ‘golden

rule’. Accepting this effectively requires the definition of a

higher-dimensional space in which an appropriate higher-
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Figure 8
Representation of two unit cells of a modulated structure obtained by a
deformation through the parameterization H of two unit cells of the
corresponding average structure. The map H is obtained from the
modulation functions H�, H	 and H� of the atoms �, 	 and �, respectively,
by using the concept of smooth homotopy. The displacement of the atoms
may be obtained by taking the difference between the positions in the
corresponding modulated and non-modulated cells.



dimensional periodic structure is defined. But the rigour

required for the definition of fundamental concepts in crys-

tallography handsomely pays back with a user-friendly

representation of symmetry operations, like linear maps

between tangent spaces, without using a higher-dimensional

space.

Note that other models for describing the symmetry of

modulated structures, without adding dimensions, have been

proposed in the past, notably by Perez-Mato and co-workers

in 1983 (Perez-Mato et al., 1984), and Mermin and co-workers

in 1995 (Dräger & Mermin, 1996). Be they based on the

invariance of the Landau free energy or on gauge transfor-

mations, both formalisms treat modulated structures in reci-

procal space, whereas the description of symmetry operations

presented here takes place in direct space.

Differential geometry appears to be an elegant frame for

the description of symmetry operations. The tangent-space

representation of such an operation is particularly practical.

The next step will be to solve the transition from one tangent

space to another one and to obtain a structure in any tangent

space once it is known from another one. This requires the

introduction of an equivalence relation on the tangent bundle

of a manifold.
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